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Abstract 

This paper considers issues relating to the segmentation or grouping of credit exposures 
and the potential impact upon economic capital allocation and attribution. When 
discussing capital allocation, we refer to the assessment of total capital at the portfolio 
level, while our discussion of capital attribution focuses on getting capital assigned 
appropriately at the bucket level.  
 
We emphasize that a loss or value function must be specified so as to quantify the gains 
and losses from choosing a more or less granular asset segmentation scheme. Our chosen 
loss function considers the trade-off between the decrease in sampling variance obtained 
by combining data to increase sample size and the bias resulting from characterizing 
unlike assets with the same default probability. 
 
The implications are illustrated with several numerical examples that consider accuracy 
in the estimation of both portfolio-level and asset-level capital requirements. The 
suggested technique can be used to quantify whether a loss in accuracy from grouping or 
segmentation is outweighed by the decrease in variance of estimated capital.  That is, the 
“loss” from grouping is small when the evaluation criterion is the accuracy of estimation 
of the required total capital; grouping is of more concern when we are interested in 
getting capital attributed correctly at the bucket level.   

                                                 
1 The statements made and views expressed herein are solely those of the authors, and do 
not represent official policies, statements, or views of the Office of the Comptroller of the 
Currency, the U.S. Department of the Treasury, or its staff 
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I.  Introduction 

The concept of economic capital (also referred to as "risk capital" or "risk-based 

capital")  is increasingly being adopted by banks and other financial institutions as a 

standard by which to determine the amount of capital needed to protect against financial 

distress in the event of unexpectedly large losses.  

When calculating portfolio economic capital requirements, most models estimate 

critical values corresponding to extreme tail percentiles of a portfolio or whole-bank loss 

distribution.  Economic capital requirements are then set to cover a measure of 

"unexpected loss," defined as the difference between the estimated mean of the loss 

distribution and the estimated loss level corresponding to the chosen critical tail 

percentile. 

By their design, economic capital models are complex, and usually take as input 

the output of several other modeling exercises, including but not limited to the estimation 

of asset-level default probabilities (PD), loss given default (LGD) rates, and cross-asset 

correlations of these same parameters.  Because these models are inherently complex, 

financial institutions must assess the risks of using them, as well as their associated 

driver-models. Model risk is defined for this purpose as the potential for loss from 

incorrect predictions or incorrect decisions resulting from the misuse of models.  Such 

misuse usually occurs when a model is misapplied or its results are misinterpreted.  

Model risk is assessed in the context of the intended use of models and best-known 
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practices used to build models.  Credit risk decision models are evaluated with respect to 

sample design, modeling techniques, validation procedures, and re-validation procedures.  

This paper considers issues relating to the segmentation or grouping of credit exposures 

and the potential impact upon economic capital allocation and attribution. When 

discussing capital allocation, we refer to assessing total capital at the portfolio level, 

while our discussion of capital attribution refers to assigning capital appropriately at the 

bucket level.  We discuss  whether a model’s logical structure  fits its application. As 

referenced in OCC Bulletin 2000-16, “Risk Modeling — Model Validation,” this 

assessment is essential to the first stage of model validation.   

In most quantitative approaches to assessing expected loss and reserves, or the 

appropriate amount of economic capital to support a portfolio of assets, the risk ratings of 

assets and their associated estimates of PD and LGD are key inputs.  PD and LGD can be 

estimated using a variety of techniques including simple descriptive statistical analysis, 

statistical and econometric regression models, and structural finance models.  Whatever 

the approach, these metrics are almost impossible to estimate uniquely for each asset – 

there is simply not enough available information.  Assets are therefore grouped, or 

segmented, into categories – buckets – and PDs are estimated by bucket.  This results in 

PD estimates that are actually average PDs for assets within categories. 

Since models that yield estimates of economic capital requirements are typically 

nonlinear in PD, how assets are grouped or bucketed has implications for economic 

capital.  That is, estimation usually poses the following trade-off:  As the size of each 

group increases, PD estimates of group averages, although more precise, are less relevant 

because more heterogeneous assets are grouped together. And as the size of each group 

decreases, PD estimates become less accurate. 

This paper analyzes exactly this trade-off in the context of economic capital 

allocation and attribution.  We employ the Basel II specification in our analysis since it is 

built upon a very simplified economic capital model, the Asymptotic Single Risk Factor  

(ASRF) model, which allows for marginal portfolio capital charges to be computed based 

upon exposure-level characteristics.  (See Vasicek (1997) and Gordy (2000) for a detailed 

discussion of the ASRF.) The ASRF model enables a bank to calculate its minimum 

regulatory capital requirement for total portfolio credit risk as the sum of exposure-level 
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capital charges, which in turn are strictly functions of PD, LGD, and a single portfolio-

level asset correlation coefficient.   However, this simplicity does not come without cost, 

since one can justify computing portfolio capital charges in this way only if (1) there is a 

single systematic risk factor driving correlations across obligors and (2) no exposure in a 

portfolio accounts for more than an arbitrarily small share of total exposure.  

The Basel II implementation process is devoting considerable resources to 

defining standards and procedures by which to judge the readiness and ability of financial 

institutions to estimate loan characteristics including PD and LGD.  Supervisory 

authorities are developing detailed specifications of the validation standards for these 

drivers. We therefore do not focus on issues relating to the validation of models used to 

estimate the drivers of, or inputs to, economic capital models.  Our focus is instead on the 

application of the economic capital model, and we emphasize that a loss or value function 

must be specified so as to quantify the gains and losses from choosing a more or less 

granular scheme of asset segmentation.  The numbers and types of alternate loss 

functions that could be specified are great, and they vary with the ultimate business uses 

of the capital estimates. Nevertheless, a natural starting point is to consider the mean-

square error implications (MSE) of alternate segmentations or groupings of assets for 

economic capital.  We illustrate the implications with several numerical examples.  

 

II.   Parameter Estimation 

Consider first the case of two types of assets, with the second being  the riskier (higher 

PD) asset.  The question is whether to combine assets 1 and 2 into the same risk bucket 

for purposes of estimating PD and capital.  Suppose there is a sample of experience on 

loans of each type, n1 observations on loans of type 1 and n2 on loans of type 2. 

Presumably (but not necessarily) n1>n2, so that there are fewer of the riskier type of asset.  

Let x1 and x2 be the observed average default rates of assets 1 and 2.  Now, suppose that 

x1 and x2 are normally distributed with mean vector θ and variance matrix .  This 

makes sense if n1 and n2 are fairly large, or if x1 and x2 are suitable transformations of the 

default rates, for example, logits.  We proceed with the actual rates, so that the situation is 

one of estimation of two binomial probabilities, noting that the results easily apply more 

generally.  In this case the variance has a simple structure, with 
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 11 = θ1(1-θ1)/n1, 22 = θ2(1-θ2)/n2. 

To simplify matters, we will assume here that 12 = 21 = 0. 

 The single "restricted" estimator, xr, that results from combining type 1 and type 2 

assets into one group is given by 

xr = (n1x1+n2x2)/n, where n = n1+n2. 

Its expectation is  

E[xr ]= (n1θ1 + n2θ2)/n 

The biases of xr as an estimator of θ1 and θ2 are 

E(xr-θ1) = n2(θ2 - θ1)/n,   E(xr-θ2) = -n1(θ2 - θ1)/n. 

These are sensible:  the higher risk asset has an underestimated PD and the lower risk an 

overestimated PD, and the position of the average between these two PDs depends on the 

relative sample sizes. The gain from allowing this bias is a variance reduction relative to 

the unrestricted estimator.  The variance of xr is 

V(xr) = (n1
2/n2) 11 + (n2

2/n2) 22 

= (n1θ1(1-θ1) + n2θ2(1-θ2))/n2 

= (n1θ1(1-θ1) + n2 θ2(1-θ2))/n2 

 

III.  Estimating Capital Requirements 

 Rather than simply considering the variability or bias in estimation of PD, we want to 

focus on the variability in estimation of risk capital. As mentioned earlier, we will 

consider capital to be determined by the risk weight formula for corporate, sovereign, and 

bank (CSB) exposures, which is specified in the proposed revisions to the Basel accord 

(BIS, 2004). Actually, we will use a somewhat simplified version of the Basel II function, 

considering the case where asset maturity is fixed at one year and LGD=100%, . 

Let W(θ): [0,1]  [0,1] denote the curve giving the capital risk weight (in fractions of loss 

given default, LGD) as a function of the probability of default.  We have that 

W(θ) = N[G(θ) (1-R)-0.5 + G(0.999) (R /(1-R)) -0.5] – θ 

where R = 0.12(1+EXP(-50θ)), N(x) denotes the cumulative distribution function for a 

standard normal random variable, and G(z) denotes the inverse cumulative normal 

distribution. We have made a further simplification by approximating the term EXP(-50) 
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appearing in the published formula by zero.  The actual value is less than 10-20.  Note that 

this risk weight curve is generally a concave function in PD, as illustrated in figure 1. 

 

Figure 1: Capital Risk Weight Curve 
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It is interesting to note at the outset that, while in general the unrestricted observed 

default rate is an unbiased estimator for the true group default probability θ, the risk 

weight corresponding to the observed default rate, W(x), does not yield an unbiased 

estimate of the risk weight corresponding to the true default probability, W(θ).  Indeed, 

since the risk curve is concave, we have E[W(x)] < W(E[x]) = W(θ), by Jensen’s 

inequality.  Thus, “plugging in” an unbiased estimator for PD and evaluating the risk 

curve there leads to a higher-than-appropriate capital estimate.2 

                                                 
2 To see this, take a Taylor series expansion of W(x1) around the true default rate θ1.  This yields 

W(x1) = W(θ1) + ∂W(θ1)/∂x1*(x1-θ1) + (1/2)∂2W(θ1)/∂x1
2*(x1-θ1)2 + r 

where r is small (with a maximum order of (x1-θ1)3).  Taking expectations gives 

E[W(x1)] = W(θ1) + (1/2) ∂2W(θ1)/∂θ1
2*V(x1) 
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IV.   Loss Functions 

We are now at a point where we can discuss the alternative loss functions that could be 

considered when assessing the consequences of bucketing decisions on economic capital 

estimates.  We must distinguish between capital allocation and capital attribution.  When 

discussing capital allocation, the corresponding loss function will focus on the variation 

in the average risk weight across buckets. In contrast, when considering capital 

attribution, a loss function for assessing attributed capital will be driven by a weighted 

average of variations in bucket-level capital risk weights. 

 

Capital Allocation 

The average capital risk weight for our portfolio containing n1 assets of type 1 and n2 

assets of type 2 is given by: 

(n1W(θ1) + n2W(θ2))/n 

It will also be useful to use a quadratic approximation to the concave W() function: 

W(x) = ax - bx2 + k 

Using this approximation, the average capital risk weight, when evaluated using the 

unrestricted estimates x1 and x2, has expected value 

(n1/n)(aE[x1] – bE[x1]2 – b 11 + k) + (n2/n)(aE[x2] – bE[x2]2 – b 22 + k) 

= (n1/n)(aθ1 - bθ1
2 – b 11) + (n2/n)(aθ2 - bθ2

2 – b 22) + k 

If the default probabilities θ were known, the average capital risk weight would be 

correctly calculated as 

(n1/n)(aθ1 - bθ1
2) + (n2/n) (aθ2 - bθ2

2) + k 

Hence the bias in the average capital risk weight is negative and equal to  

–b(n1 11+n2 22)/n. 

Similarly, we calculate the variance of the average portfolio risk weight to be 

E[n1(a(x1-θ1) - b(x1
2-θ1

2))+ n2(a(x2-θ2) - b(x2
2-θ2

2))]2/n2 

                                                                                                                                                 
since E(x1-θ1) = 0.  Since W is concave, the second term is negative and the random variable W(x1) has 

expectation smaller than W(E[x1]) = W(θ1).  Kiefer and Larson (2003) investigate this bias in detail and 

propose corrections. 
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Using the assumed independence of x1 and x2, and noting that the normal third moments 

are zero and fourth moments are 3 jj
2 , this simplifies to  

(n1
2

 (a2
11 + b2(3 11

2)) + n2
2

 (a2
22 + b2(3 22

2)))/n2 

We now have enough information to show that when risk weights are calculated by 

plugging the unbiased, unrestricted estimators into the W function (as envisioned by 

Basel II), the mean square error in the average risk weight is given by 

MSEu = (b2(n1 11+n2 22)2  + n1
2

 (a2
11 + 3b2

11
2) + n2

2
 (a2

22 + 3b2
22

2))/n2. 

 

We now turn to the average capital risk weight that is obtained using the restricted 

estimator that combines assets into a single bucket.   We consider the calculation of W at 

xr. Again using our quadratic approximation to W, taking expectations yields 

E[W(xr)] = (aE[xr]– b(E[xr]2 – bV(xr)+k). 

Recall that E[xr]= (n1θ1 + n2θ2)/n and that V(xr) = (n1
2/n2) 11 + (n2

2/n2) 22. 

Thus, the bias in using the restricted estimator W(xr) for W(θ) is given by 

a((n1θ1 + n2θ2)/n) – b((n1θ1 + n2θ2)2/n2) – b((n1
2/n2) 11 + (n2

2/n2) 22) 

- (n1/n)(aθ1 - bθ1
2) - (n2/n)(aθ2 - bθ2

2). 

The variance of W(xr) is given by 

V(W(xr)) = a2V(xr) + b2(3V(xr)2) 

= a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) 

and the MSEr is of course the variance plus the squared bias. 

The best quadratic approximation to W(θ) around θ = 0.05 is given by  

W(θ) = 0.130922 + 2.33006 θ - 5.17491 θ2 

Note that this quadratic approximation is quite accurate, with a maximum absolute 

relative error of less than 0.2 percent for 0.015<θ< 0.1 (i.e., the maximum error as a 

fraction of the actual W(θ) is less than 0.002) 

Figures 2 and 3 illustrate the impact of choosing to combine or segment asset 

classes for the purposes of allocating economic capital.  The figures graph the difference 

between the two mean square error measures of the average risk weight as functions of θ1 

and θ2, the true rates of default for the two asset classes in the portfolio.  
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The surfaces have been shaded to illustrate the regions where, for the indicated 

portfolio sizes, the difference between θ1 and θ2 results in either positive or negative 

differences in restricted less unrestricted MSE.  When the difference is positive, a 

granular bucketing system is to be preferred to one which pools asset types for the 

purposes of minimizing MSE in total capital allocation.  When the difference is negative, 

a pooling of asset types results in lower MSE.  

Comparing figures 2 and 3 illustrates the impact of larger sample sizes. We see 

that, as expected, the restriction is better when the range of PD values for each bucket is 

small.  Larger sample sizes lead to restrictions being less desirable. 

 

Capital Attribution  

Capital attribution is concerned with bucket-level or segment-level accuracy in 

estimation. We therefore want to formulate a loss function that is sensitive to variation in 

bucket-specific estimates of risk weights. 

When attributing capital to each of our two assets, using the unrestricted 

estimators, the expected value of the bucket-specific risk weights are given by 

E[W(x1)] = (aE[x1] – bE[x1]2 – b 11 + k) = (aθ1 - bθ1
2 – b 11 + k) 

E[W(x2)] = (aE[x2] – bE[x2]2 – b 22 + k) = (aθ2 - bθ2
2 – b 22 + k) 

If the true segment-specific default rates were known, then the risk weights would be 

computed as 

W(θ1) = aθ1 - bθ1
2

 + k 

W(θ2) = aθ2 - bθ2
2 + k 

This allows us to compute the unrestricted estimate bucket-level risk weight biases as 

E[W(x1)-W(θ1)] = -b 11 

E[W(x2)-W(θ2)] = -b 22. 

The variances of the bucket-level risk weight estimates are given by 

V[W(x1)] = E[(a(x1-θ1) - b(x1
2-θ1

2))2] 

V[W(x2)] = E[(a(x2-θ2) - b(x2
2-θ2

2))2]
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Figure 2:  Restricted MSE Minus Unrestricted MSE of Allocated Capital 

(n1 = 500, n2 = 100) 
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Figure 3:  Restricted MSE Minus Unrestricted MSE of Allocated Capital 

(n1 = 1000, n2 = 200) 
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Since the normal third moments are zero and fourth moments are 3 jj
2 , these simplify to  

V[W(x1)] = (a2
11 + b2(3 11

2)) 

V[W(x2)] = (a2
22 + b2(3 22

2)) 

By adding the squared bias, the bucket-level unrestricted mean square errors are given by 

MSEu1= a2
11 + 4b2

11
2

 

MSEu2= a2
22 + 4b2

22
2

 

Which allows us to compute the weighted-average unrestricted MSE across buckets as 

MSEu = (n1/n)(a2
11 + 4b2

11
2) + (n2/n)(a2

22 + 4b2
22

2) 

 

Turning to the restricted estimator, we have from our previous work that 

E[W(xr)] = a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22)+k. 

and 

V(W(xr)) = a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) 

We compute the restricted estimate bucket-level risk weight biases as 

E[W(xr)-W(θ1)] = 

a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ1 - bθ1
2) 

E[W(xr)-W(θ2)] =  

a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ2 - bθ2
2) 

 

Again, by adding the variance and squared bias, the bucket-level MSEs from using the 

restricted estimator are given by 

MSEr1= a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) + 

(a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ1 - bθ1
2))2

 

MSEr2= a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) + 

(a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ2 - bθ2
2))2 

which allows for the weighted-average restricted MSE across buckets to be computed as  

MSEr = (n1/n)(a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) + 

(a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ1 - bθ1
2))2) 

+ 

(n2/n)(a2((n1
2

11 + n2
2

22)/n2)+ b2(3((n1
2/n2) 11 + (n2

2/n2) 22)2) + 

(a((n1θ1 + n2θ2)/n) – b(((n1θ1 + n2θ2)/n)2 – b((n1
2/n2) 11 + (n2

2/n2) 22) – (aθ2 - bθ2
2))2) 
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Figures 4 and 5 illustrate the differences in the MSE of risk weights that arise for various 

combinations of θ1 and θ2.  Again, we see that the restrictions are desirable only when the 

range of PDs is small. Here, in contrast to the case of total capital, it is not only the 

difference between the PDs that matters. When PDs are small, restrictions are less 

desirable for a given distance between them.  Concern for bucket-level accuracy will lead 

to less combining of estimators. 

 

IV.   Conclusions 

This paper illustrates an approach to capital model assessment by considering the 

following trade-off: A bank can decrease sampling variance by combining data to 

increase sample size, but as the bank increases sampling size, its estimates become less 

accurate because increasingly unlike assets are assigned the same default probability. We 

considered accuracy in the estimation of both portfolio-level and asset-level capital 

requirements using a specification from the proposed revisions to the Basel accord.   

Our technique can be used to quantify whether the decrease in variance of 

estimated capital outweighs the loss of accuracy that results from making segments more 

heterogeneous.  Although these numbers are specific to the example, it is likely that the 

relative ranking of the criteria holds more generally.  That is, the “loss” from grouping is 

small when the evaluation criterion is the accuracy of estimation of the required total 

capital; grouping is of more concern when we are interested in getting capital attributed 

correctly at the bucket level.  

Note that we have not here suggested practical methods for deciding the 

granularity of a bucketing procedure.  We have simply considered the effects of using 

different criteria to judge the effects of pooling buckets.  A classical approach is to 

“pretest,” perhaps with a t-test for differences in means, and then decide whether to pool 

on the outcome of such a test (Mosteller, 1948)  Classically, the pretest is done on the 

difference between parameter estimates. The pretest, if desired, might be better done on 

the estimated capital requirements directly. 
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Figure 4:  Restricted MSE Minus Unrestricted MSE of Attributed Capital 

(n1 = 500, n2 = 100) 
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Figure 5:  Restricted MSE Minus Unrestricted MSE of Attributed Capital 

(n1 = 1000, n2 = 200) 
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